

Module Title:	Mechanical Sc	ience		Level	: 4		Cred Valu		20
Module code:	ENG458	Is this a new module?	No	No Code of module being replaced:					
Cost Centre:	GAME	JACS3 co	de:		H142				
Trimester(s) in which to be offered:1, 2			With effect from:Septemb			ember	17		
School:Applied Science, Computing & EngineeringModule Leader:R.Bolam									
Scheduled learning and teaching hours						60 hrs			
Guided independent study			140 hrs						
Placement						0 hrs			
Module duration (total hours)						200 hrs			
Programme(s)	in which to be o	offered					(Core	Option
BEng (Hons) Aeronautical and Mechanical Engineering				•	/				
BEng (Hons) Mechanical Manufacturing									
BEng (Hons) Automotive Engineering					/				
BEng (Hons) Drone Technology and Operations									
BEng (Hons) Renewable Energy and Sustainable Engineering					<u>/</u>				
BEng (Hons) Electrical and Electronic Engineering					١				

BEING (HONS) Renewable Energy and Sustainable Engineering	•	
BEng (Hons) Electrical and Electronic Engineering	✓	
BEng (Hons) Applied Product Design	✓	
BEng (Hons) Automation Engineering	✓	
BEng (Hons) Optoelectronics and Holography	✓	
BEng (Hons) Aerospace and Modern Optics	\checkmark	

Office use only	
Initial approval February 17	
APSC approval of modification	Version 1
Have any derogations received Academic Board approval?	Yes ✓ No 🗆

Module Aims

- 1. To insure the student understands and is able to apply the principles of solid mechanics to solve problems in practical situations.
- 2. To insure the student understands and is able to apply the principles of fluid mechanics to solve problems in practical situations.
- 3. To insure the student understands and is able to apply the principles of thermodynamics to solve problems in practical situations.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Understand and calculate the magnitude of loads and	KS1		
	stresses applied to pin jointed structures and beams under	KS4		
	static conditions.	KS10		
2	Understand and calculate the magnitude of loads and	KS1		
	stresses applied to rotating components such as shafts and	KS4		
	flywheels when subjected to dynamic loading conditions.	KS10		
3	Explain the properties of fluids, their effect on fluid flow and	KS3		
	the importance of their effects on objects in contact with flowing fluids.	KS4		
		KS10		
	To explain the laws of thermodynamics, and do calculations to determine heat transfer, the state changes of a liquid and the Coefficient of Performance of a Heat pump.	KS1		
4		KS2		
		KS3		
		KS7		

Derogations

A derogation from regulations has been approved for this programme which means that whilst the pass mark is 40% overall, each element of assessment (where there is more than one assessment) requires a minimum mark of 30%.

Assessment:

Assessment 1: is by means of a time-constrained test covering outcomes 1 and 2.

Assessment 2: Is based on two practical experiments conducted in the engineering laboratories on subjects such as Fluid dynamics, Thermodynamics or Structures.

The practical assessment shall involve: A fluid dynamics experiment using a Venturi-meter apparatus and a thermodynamics experiment using a Heat Pump apparatus.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1,2	In-class test	50	90 mins.	
2	3,4	Practical	50		2000

Learning and Teaching Strategies:

The module will be taught with lectures, tutorials and laboratory sessions.

Syllabus outline:

Solid Mechanics

Systems of Force and Moments: Type of forces; Equilibrium and free-body diagrams; Two dimensional and three-dimensional force systems; Two-dimensional description of moment and moment vector; Couples; Moment of a force about a line; Equivalent systems.

Structures in Equilibrium: Trusses; The method of joints; The method of sections; Space Trusses; Frame and machines.

Direct Stress, Direct Strain and Shear Stress: Direct stress and direct strain; Young's Modulus of Elasticity; Shear stress; Modulus of Rigidity.

Compound Bars: Definition of a compound bar; Stresses and deformation due to uni-axial loads at uniform temperature.

Shear Force and Bending Moment Diagrams: Shear force and bending moment diagrams for simply supported and cantilever beams subjected to different loading conditions.

Simple Bending Theory: Centroid, first moment of area and second moment of area; Simple bending equation; Application to rectangular, circular and idealised I-section beams; Section modulus; Selection of appropriate beams for given loading using standard section handbooks.

Simple Torsion Theory: Simple torsion equation; Relationship between torque and power; Solve problems involving torsion in solid shafts.

Angular Motion: Equations for angular motion with constant angular acceleration; Application to practical engineering problems; Relationship between applied torque, angular acceleration and moment of inertia; Radius of gyration; Angular acceleration of discs and flywheels; Static and dynamic balancing; Solution of problems involving out of balance forces by analytical and graphical means.

Linear and Angular Kinetic Energy: Expressions for linear and angular kinetic energy; Problems including flywheels and lift systems. Vibrations: Simple harmonic motion; Simple pendulums and spring mass systems; Concept of resonance and resulting problems.

Material Classification: isotropic, orthotropic, anisotropic. Poisson's ratio. Two dimensional problems. Volumetric strain. Bulk modulus. Elastic constants.

Theorem of Parallel Axes: Second moment of area about the neutral axis for common sections.

Fluid Mechanics

Fluid Properties: Absolute density, Relative Density, Absolute (Dynamic) viscosity and Kinematic viscosity of liquids and gases, Bulk Modulus, Surface tension. Basic definition and uses of Newton, Reynolds, Froude, Weber and Mach Numbers.

Fluid Flow: Laminar, Transitional and Turbulent flow regimes. Boundary Layer, Continuity of Flow and Bernoulli's Equation, Flow through a Venturi-meter.

Thermodynamics

Temperature measurement: Celsius (Centigrade), Kelvin, Fahrenheit and Rankine scales and Methods of Temperature Measurement.

Pressure measurement: Absolute and gauge pressure measurement. Boyle's Law, Charles' Laws and the equation of state for an ideal gas.

Heat & Work: Thermodynamic laws, Enthalpy and Entropy, Material Phase Changes, Polytropic processes, the Carnot Cycle, Specific Heat Capacity, Heat Transfer, Vapour-cycle Refrigeration and Heat Pumps.

Bibliography:

Essential reading

Bolton, W. (2006) Mechanical Science, 3rd Edn. Blackwell Publishing.

Other indicative reading

Hannah, J & Hillier, J (1999) Mechanical Engineering Science, 3rd Edn. Prentice Hall.